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High-symmetry free tilings of the two-dimensional hyperbolic plane (H2) can

be projected to genus-3 3-periodic minimal surfaces (TPMSs). The three-

dimensional patterns that arise from this construction typically consist of

multiple catenated nets. This paper presents a construction technique and

limited catalogue of such entangled structures, that emerge from the simplest

examples of regular ribbon tilings of the hyperbolic plane via projection onto

four genus-3 TPMSs: the P, D, G(yroid) and H surfaces. The entanglements of

these patterns are explored and partially characterized using tools from

TOPOS, GAVROG and a new tightening algorithm.

1. Introduction

The interpenetration of multiple networks (or nets) is a

challenging issue from a geometric perspective. The topic is

also one of relevance to materials science. Although they are

difficult to characterize mathematically, or indeed identify in

chemical systems, their importance has long been recognized.

Alexander Wells, who pioneered the systematic study of nets,

recognized the potential importance of multiple nets and

discussed some examples in detail (Wells, 1977). They are

often encountered in typically highly porous metal–organic

frameworks (MOFs), whose various catenation types have

been the subject of a number of studies (Batten & Robson,

1998; Chen et al., 2001; Carlucci et al., 2003; Blatov et al., 2004;

Baburin et al., 2005; Eon, 2006; Blatov, 2006; Blatov &

Proserpio, 2009; Alexandrov et al., 2011; Eon et al., 2012). They

are also found in bicontinuous liquid crystalline mesophases

and related mesoporous tricontinuous inorganic derivatives

(Han et al., 2009). Novel ‘polycontinuous’ open foam-like

patterns have also been formed starting from multiple nets

(Hyde & Ramsden, 2000a; Hyde et al., 2009; Schröder-Turk et

al., 2013).

We adopt the following definitions. First, a graph is a

topological object without geometry, defined by points and

their mutual connections via edges; simple graphs have no

more than one edge between any vertex pair. We discuss here

mostly infinite graphs, with an unbounded number of vertices

and edges. An embedding of a graph is a geometric realization

of that graph in a space, with assigned geometry (e.g. coordi-

nates) for vertices and all edge points. The number of inde-

pendent translation vectors of the graph embedding defines its

periodicity: we are concerned here with 1-, 2- and 3-periodic

graph embeddings. The number of edges that share a vertex

characterizes the degree of that vertex; if all vertices have

equal degree (e.g. z), the graph and its embeddings have

degree z. In concordance with graph theory, we understand a

k-connected graph to mean that at least k vertices and their

associated edges must be deleted from the graph to split it into

more than a single disjoint graph. Nets are simple 3-connected

graph embeddings (Beukemann & Klee, 1992; Klee, 2004).

In order to classify discrete groups of hyperbolic space, we

adopt the orbifold concept, developed by Thurston (1980),

which essentially describes all symmetry operations acting on

a single asymmetric domain [a concept equally useful to two-

dimensional plane groups in E2 (Conway & Huson, 2002)]. We

use Conway’s (1992) orbifold nomenclature to describe the

groups. For convenience, we classify orbifolds into classes

determined by their symmetry operators (or, equivalently, the

orbifold topology). Here we deal only with three classes.

Coxeter orbifolds have a single mirror-line boundary and no

internal centres of rotation symmetry (denoted by ‘?’

symbols). Stellate orbifolds are free of reflection isometries

and characterized by centres of rotation symmetry (whose

orders build the orbifold symbol). Hat orbifolds contain

features of both previous classes, with mirrors and rotation

centres (not on mirror lines). (Like Euclidean space, hyper-

bolic space can also be symmetrically decorated with patterns

containing translation and glide reflection isometries, denoted

‘�’ and ‘�’, respectively.)

This paper and its companion (Evans et al., 2013) are

focused on (en)tangled graph embeddings, which are typically

constituted of a number of disjoint components, wound

around each other with varying degrees of mutual threading.

A robust signature of entanglement is unsolved in general,

though we develop in this paper an algorithmic approach that

sheds some light on the issue. Identifying entanglement is

related to the issue of identifying equivalent knots, a central

concern of knot theory (Adams, 2004), though more complex.
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Knots are (possibly) tangled embeddings of a topological loop;

here we are interested in embeddings of a far broader class of

graphs. We consider any pair of embeddings to be equivalent

if they share the same entanglements (notwithstanding the

associated difficulties in characterization of that entangle-

ment). In mathematical language, that implies the embeddings

are ambient isotopic, i.e. capable of being continuously trans-

formed from one to the other such that distinct edges never

share a common point in space, precluding edges from passing

through each other. Embeddings that are not ambient

isotopic, and have distinct entanglements, are distinct isotopes

(Castle et al., 2011).

This paper and its companion (Evans et al., 2013) share a

common approach to enumeration of entangled graph

embeddings. Our technique relies on the possibility of

embedding any graph in a two-dimensional (curved) surface

(Lindsay, 1959). If that surface is a triply periodic minimal

surface (TPMS), conventional Delaney–Dress tiling theory

can be used to enumerate (crystalline) nets as reticulations of

the TPMS to an arbitrary degree of complexity. This method

simplifies somewhat the enumeration of nets embedded in

three-dimensional Euclidean space (E3), translating that

problem to the enumeration of TPMS tilings. The latter

problem is solved by first finding symmetric tilings of the

universal cover of the TPMS, namely the hyperbolic plane

(H2). In order to project the H
2 pattern to the TPMS,

admissible hyperbolic patterns have isometries that are also

isometries of the surface (i.e. symmetries of H2, rather than

E
3) (Sadoc & Charvolin, 1989). We restrict allowed isometries

to those that retain the full translational symmetries of the

TPMS, thereby guaranteeing the construction of 3-periodic

nets in E3 (Robins et al., 2004a). This amounts to deducing all

orbifolds whose associated groups are subgroups of ?246 and

supergroups of � � �. Admissible groups are listed in Robins et

al. (2004a); we adopt the same numbering scheme for groups

as listed there.

Patterns in the hyperbolic plane cannot be represented on a

flat page without some distortion. We choose to drawH2 using

the Poincaré disc model of H2 (Hilbert & Cohn-Vossen, 1952;

Coxeter, 1947; Beardon, 1995).1

The simplest TPMSs are the so-called genus-3 TPMSs

(Hyde et al., 1997). Among those, the cubic examples,

Schwarz’ primitive (P) surface, Schwarz’ diamond (D) surface

and Schoen’s gyroid (G) surface (Schoen, 1970) are the most

symmetric in both E3 and H2 (Fig. 1). The two-dimensional

asymmetric patch of the P, D and G surfaces is a hyperbolic

triangle, bounded by mirror lines (Molnar, 2002; Hyde,

Ramsden et al., 2003). This patch tiles bothH2, as shown in Fig.

1(a), and the three simplest TPMSs, illustrated in Figs. 1(b),

1(c), 1(d). The symmetry group of the tiling is ?246.

An online enumeration of conventional tilings commensu-

rate with the P, D and G surfaces and their corresponding

TPMS reticulations is located at Hyde et al. (2010), and details

of the process are given in Hyde et al. (2006). A complete

description of kaleidoscopic tilings, whose asymmetric

domains and orbifolds are bounded by mirror lines, is given in

Ramsden et al. (2009). That study considered only tilings ofH2

that are composed entirely of tiles topologically equivalent to

a compact disc, a constraint that is consistent with the usual

implementation of Delaney–Dress tiling theory. The resulting

patterns in E3 are embedded single-component, 3-periodic

nets.

This restriction is convenient and mathematically useful,

though limiting, since Euclidean and hyperbolic spaces can be

tiled by a broader class of tiles also. In this paper and its

partner publication, we explore patterns that emerge from

hyperbolic tilings whose tiles are infinite, rather than compact,

and we term these tilings free tilings. These examples signifi-

cantly broaden the catalogue of resulting patterns in E3, since

multiple interwoven patterns are generally (though not

always) formed with more than one disjoint component.

In this paper we explore free tilings whose hyperbolic tiles

are infinite ribbon-like strips with boundaries composed of

finite edge segments that meet at vertices of degree 3 or more.

Switching focus from the tiles to the edges, we see that these

edges form ‘forests’ (i.e. collections of trees). These have been

explored to a limited extent previously (Hyde & Ramsden,

1999; Hyde & Oguey, 2000; Hyde & Ramsden, 2000b,c; Hyde,

Larsson et al., 2003; Hyde, Ramsden et al., 2003; Hyde &
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Figure 1
(a) ?246 tiling on the Poincaré disc model of H2. The cubic genus-3
TPMSs, (b) P surface, (c) D surface and (d) G surface. All are covered by
the same triangular tiling, and an orientation preserving subgroup of
?246. The blue and purple colours show the two distinct channels of the
surfaces.

1 This conformal (i.e. angle-preserving) model maps H2 onto the interior of a
unit circle, with ever-increasing length shrinkage from the centre to the
boundary, so that the boundary of the circle in fact represents points at infinity
inH2 (Hilbert & Cohn-Vossen, 1952). A hyperbolic geodesic – the analogue of
a Euclidean straight line – is represented in the disc by a circular arc that meets
the boundary circle at right angles. Parallel geodesics in H2 are presented by
circular arcs that just meet at the disc boundary; hyperparallel geodesics map
to circular arcs that have no points in common.



Ramsden, 2003). After projection onto a TPMS, these forests

become periodic arrays of multi-component nets with varying

degrees of entanglement.

To date, ab initio enumeration of multiple nets has been

elusive. Here we describe in some detail the simplest examples

of multiple nets. The analysis draws on earlier work (Hyde &

Oguey, 2000), now extended. The paper deals in detail with the

simplest cases, namely multiple regular degree-3 nets, gener-

ated from regular ribbon tilings using an extension of

Delaney–Dress tiling theory. First, we sketch a route to

enumeration of free tilings. Second, we extend tilings beyond

the kaleidoscopic cases due to Coxeter orbifolds, to include

examples of stellate orbifolds of H2, where the symmetry of

the tiling is composed solely of rotations. These examples

admit a two-parameter family of embeddings of the tilings in

H
2 and the TPMSs, analogous to embedding parallelograms in

the two-dimensional Euclidean plane. Those tools are then

used to construct a catalogue of degree-3 regular ribbon tilings

on the P, D and G surfaces, and their associated embeddings

in E3 as multiple nets. We also describe some examples of

multiple degree-4 and degree-6 nets from regular ribbon

tilings, providing a template for exhaustive enumeration of

other cases.

A characteristic of the Euclidean patterns that result from

these tilings is their various entangled forms. We discuss

various measures of entanglement and introduce a numerical

tightening algorithm, suitable for tangled nets, that offers a

partial resolution of the vexed issue of distinguishing various

entanglements of multiple nets.

2. Accommodating free tilings within Delaney–Dress
tiling theory

Combinatorial tiling theory allows exhaustive enumeration of

symmetric tilings of (in principle) any simply connected space

by finite, simply connected tiles. It has been developed in

detail for H2, E2, S2 and E3 (Huson, 1993; Delgado-Friedrichs

& Huson, 1999; Delgado-Friedrichs, 2001). Its constructive

key is a finite Delaney–Dress tiling symbol (or ‘D-symbol’),

that provides a canonical and finite encoding of the topology

and symmetry of the tiling (Dress, 1987). The D-symbol for a

tiling is formed by triangulating tiles of the periodic tiling into

chambers, where the three vertices of the chamber lie at a

vertex, edge and face of the tiling. Symmetrically distinct

chambers are assigned a distinct label and the D-symbol

encodes the combinatorics of involutions between chambers.

The number of symmetrically distinct faces, edges and vertices

of the tiling defines its ‘transitivity’; thus the most symmetric

(‘regular’) tilings are vertex-, edge- and face-1-transitive.

A unique ordering of complexity may be obtained from a

D-symbol, allowing exhaustive enumeration of tilings by their

complexity (Delgado-Friedrichs, 2003). A fuller application of

this approach to tilings of H2 and TPMSs can be found in

Ramsden et al. (2009).

The combinatorial approach can be used to characterize (or

conversely to construct) an example of a regular tiling of H2

with symmetry group ?2223. The tiling contains vertices at ?3
sites (the site where three mirrors intersect) and edges along

both mirror edges of the ?2223 orbifold linking ?3 and ?2 sites,

forming a tessellation of H2 of degree-6 by quadrangles (a

f4; 6g regular tiling, Fig. 2). We fragment a single tile into

constituent chambers and label chamber vertices 0; 1; 2

according to their location on tiling vertices, edges and faces,

respectively. Edges are labelled by the label of the opposite

vertex. Two distinct chambers, A and B, result. The D-symbol

is built as follows. First, the symmetry of the tiling is encoded

by determining the effect of involutions in all three edges of

each chamber. Involutions are denoted s0; s1; s2, where the

subscript determines the edge through which the chamber is

mapped. For example, chamber A is mapped to chamber B

through the chamber edge connecting the ?3 site (a ‘0’ vertex)

and the opposite ?2 site that lies within a face (and is therefore

a ‘2’ vertex). The s1 involution therefore maps A to B. The

complete combinatorics make up the symmetric encoding of

the tiling’s D-symbol. Its topology (f4; 6g) is encoded by

integer entries for the order of the cyclic AB permutation

around vertices and faces (m12 and m01, respectively). The

resulting D-symbol is tabulated in Fig. 2, where the symmetry

group of the tiling is ?2223.

The key to generating free tilings with infinite tiles is the

recognition that free tilings transform to conventional tilings

(containing finite tiles) by the addition of a finite number of

symmetrically distinct edges. We therefore extend the con-

ventional combinatorial approach to infinite tiles by deleting

edges from a conventional tiling while preserving the original

Delaney–Dress triangulation. By associating each free tiling

with a conventional tiling, free tilings inherit the enumerable

structure of D-symbols. These free tilings are denoted by

the original Delaney–Dress encoding

with an additional signifier, namely a

1-vertex rather than the standard

1-vertex, on the chambers that now

contain a ‘ghosted’ edge. The symbol

may be tabulated identically to regular

tilings; however the chambers con-

taining real edges are given in bold font

and the chambers with ghosted edges in

regular font. We note that the develop-

ment of free tiling theory is still in

progress. However, for the purposes of

this paper, the approach proves useful.
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Figure 2
The Delaney–Dress representation of a regular f4; 6g tiling on the ?2223 orbifold. The edge passes
along the mirror boundary from the ?3 site to the ?2 site. See the text for further details.



This encoding is complicated by the fact that most free

tilings may be constructed from multiple distinct conventional

tilings: if two conventional tilings differ only by a single edge

(and have different Delaney–Dress encodings), and this

particular edge is ghosted, the same free tiling will result and

will be classified by two distinct encodings. The unique

encoding of a free tiling is chosen to be the simplest among all

possible encodings, as defined by the number of chambers

within the triangulation of a single orbifold domain. Where

there exist multiple simplest encodings of a single free tiling,

the unique encoding is chosen to be that which has the least

complexity according to the D-symbol ordering (Delgado-

Friedrichs, 2003).

The free tilings considered in this paper are regular ribbon

tilings of H2. Recall that regular tilings are vertex-, edge- and

face-1-transitive. A Euclidean ribbon is a strip whose

‘skeleton’ – the central axis that is maximally distant from the

ribbon edges – is an unbranched line. Similarly, a hyperbolic

ribbon is characterized by an unbranched line-shaped

skeleton. Unlike Euclidean ribbons however, hyperbolic

ribbons are bounded by finite edges and contain an infinite

number of vertices. The edges and vertices belong to hyper-

bolic trees (Hyde & Oguey, 2000). The edges of degree-3

ribbon tilings form degree-3 trees. Like their Euclidean

cousins, regular hyperbolic ribbon tiles exhibit translational

symmetry, by translations along the ribbon’s skeleton. The

most symmetric ribbon tilings are of special importance

among the hierarchy of free tilings, since their edges form

close-packed trees in H2, whose vertex density in the hyper-

bolic plane is maximal (Hyde & Oguey, 2000). We call these

close-packed examples ‘dense’ tilings. While this notion of

close packing does not carry over to the resulting Euclidean

embeddings of ribbon tilings, the resulting patterns are

nevertheless densely arrayed on the TPMS.

A simple example of a dense, regular degree-3 ribbon tiling

is shown in Fig. 3. The infinite tile is bounded on both sides by

edges of a regular tree and its skeleton is a hyperbolic

geodesic.

Possible symmetries of regular degree-3 dense ribbon tilings

can be readily deduced from their 1-transitivity. Edge transi-

tivity implies that the degree-3 vertex of the tile boundary

must have threefold rotational symmetry, so its site symmetry

is either 3 (a threefold rotation centre) or ?3. Further, since all

vertices are equivalent, edge midpoints must have site

symmetry 2 or ?2. Their translational symmetry within indi-

vidual ribbons may be due to some combination of ?2
symmetries, twofold rotations, ‘�’ or ‘�’. Among the admis-

sible groups that are commensurate with the cubic TPMSs

(Robins et al., 2004a), four fit these criteria: ?2223 (group 124),

2?23 (group 129), 2223 (group 118) and 23� (group 121).

Regular ribbon tilings from the 23� orbifold display addi-

tional symmetry, so that these examples adopt a symmetry

group of 2?23 (a supergroup of 23�). We therefore analyse

regular ribbon tilings with symmetry groups ?2223, 2?23 and

2223, belonging to the Coxeter, hat and stellate orbifold

classes, respectively.

The Coxeter class allows a single, regular degree-3 ribbon

tiling. The tile edge runs from the ?3 sites along the mirror

boundary to a ?2 site. The decoration has boundary vertices at

the ?3 site, edge midpoints at the ?2 site and an infinite

translation generated by the parallel mirrors of the remaining

two ?2 sites. This decoration is shown in Fig. 4 along with a

table representing its Delaney–Dress encoding. We name this

tiling for convenience ‘124RT’: R for ‘regular’, T for the ‘tree-

like’ topology of the tile boundaries and symmetry of group

124.

The single degree-3 regular ribbon tiling (129RT) from the

hat class ð2?23Þ contains an edge passing from the ?3 site

along the mirror boundary to the ?2 site (Fig. 5).

Lastly, a stellate regular ribbon tiling is possible ð2223Þ. The

orbifold is decorated by an edge passing from the centre of

threefold rotation to a centre of twofold rotation. Fig. 6 shows

the regular ribbon tiling tabular representation along with an

image of the decorated orbifold. This tiling is referred to as

118RT.

3. Embedding abstract tilings in two dimensions

The D-symbol is an encoding of the topology and symmetry of

a tiling. It encodes a decoration of an orbifold and distinct
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Figure 3
A close-packed array of regular degree-3 trees (full edges) in the
hyperbolic plane, separated by geodesic lines that define the skeleton of
the tile (dashed). The shaded polygon represents a portion of an infinite
ribbon tile, that extends infinitely along the skeleton.

Figure 4
The Delaney–Dress representation of a regular ribbon tiling on the ?2223
orbifold: 124RT. The edge passes along the mirror boundary from the ?3
site to the ?2 site.

Figure 5
The regular ribbon tiling of the 2?23 orbifold. The decoration passes from
the ?3 site, along the mirror boundary, to the ?2 site. This tiling is referred
to by the label 129RT.



embeddings of the tiling can be constructed that share the

same orbifold. Fig. 1, for example, shows four different

surfaces that share the ?246 orbifold. To generate an

embedded tiling, the set of generators for the group corre-

sponding to the orbifold must be specified within the

embedding space.

The two-dimensional asymmetric patch (or fundamental

domain) of the P, D and G surfaces is a triangle bounded by

in-surface mirror (curvilinear) lines meeting at angles of �=2,

�=4 and �=6 at the corners of the patch – a ?246 triangle. That

follows from the differential geometry of these TPMSs, but it

is not readily apparent from a Euclidean perspective. In fact,

those two-dimensional mirrors can coincide with mirror

planes, twofold axes of rotational symmetry, or no Euclidean

isometries at all in E3, depending on the TPMS (Ramsden et

al., 2009).

The asymmetric patch of any ?246 tiling corresponds to a

single ?246 triangle bounded by (hyperbolic) lines with equal

vertex angles to those on the cubic TPMSs. In contrast to the

three-dimensional examples, this triangle is unique in H2. Its

three edges define mirror lines in H2 induced by the symme-

tries of ?246: R1, R2 and R3. The reflection R1 maps across the

line passing from the ?6 site through the ?2 site, R2 from the ?2
site through the ?4 site and R3 from the ?6 site through the ?4
site (Robins et al., 2004a; Molnar, 2002). The infinite ?246
pattern is shown in Fig. 1(a).

In order to form tilings on the cubic TPMSs, we require

embeddings of ?2223, 2?23 and 2223 orbifolds as subgroups

of ?246. That constrains the orbifold geometries to be

commensurate with the parent ?246 geometry so that

symmetry sites of the orbifold must coincide with symmetry

elements of the ?246 group.

3.1. Embedding ?2223

The regular degree-3 Coxeter ribbon tiling, with symmetry

group ?2223, has a unique embedding in the ?246 tiling

pattern (Robins et al., 2004a). (Here we refer to the tiling

formed by ?246 triangles as the ‘?246 tiling’.) This embedded

orbifold is composed of exactly two ?246 triangles, glued

along R3 (the mirror passing from the ?6 site to the ?4 site).

This amalgamated domain has two ?2 sites from the original

two triangles, an additional ?2 site from a gluing of two ?4 sites

and a ?3 site from a gluing of two ?6 sites. One fundamental

domain of the ?2223 orbifold embedded in the ?246 is shown

in Fig. 7(a). The ?2223 orbifold has an abstract symmetry

(automorphism) along the axis passing from the ?3 site to the

opposite ?2 site. Once the orbifold is embedded, however, this

abstract symmetry aligns with the R3 reflection of the ?246
tiling: the automorphism of the orbifold corresponds to a

conjugacy of the ?246 map, so we need only consider one form

(Ramsden et al., 2009). The embedded regular ribbon tiling

from Fig. 4, denoted ?246124RTðcosh�1
ð3ÞÞ, is shown in Fig.

7(b), where cosh�1
ð3Þ denotes the edge length of the trees in

H
2. We label the cases as ?246NRTðlÞ, where N denotes the

group number (cf. Robins et al., 2004a) and l is the edge length.

3.2. Embedding 2?23

The hat orbifold, 2?23, also has an embedding, which can be

demonstrated as follows. Consider the orbifold formed by

gluing a pair of 2?23 orbifolds around the twofold rotation

site. This forms a ?2323 (Coxeter) orbifold, which uniquely

embeds (Fig. 8a). As in the previous Coxeter case, the auto-

morphism of the 2?23 orbifold (an abstract mirror symmetry

on the axes passing from the ?3 site to the twofold rotation) is

a conjugacy of the ?246 tiling, so we need only consider a

single automorphic embedding of the orbifold. Fig. 8(b) shows

the embedding of the regular ribbon tiling with symmetry

group 2?23, ?246129RTðcosh�1
ð5ÞÞ.

Acta Cryst. (2013). A69, 241–261 Evans, Robins and Hyde � Periodic entanglement I 245

research papers

Figure 7
(a) The embedding of the ?2223 orbifold in the ?246 tiling of H2: two
?246 triangles fused along an R3 boundary. (b) ?246124RTðcosh�1

ð3ÞÞ, the
embedded regular ribbon tiling of ?2223.

Figure 8
(a) The unique embedding of the 2?23 orbifold into the ?246 tiling of H2.
(b) ?246129RTðcosh�1

ð5ÞÞ, the embedded regular ribbon tiling with
symmetry group 2?23 (Fig. 5).

Figure 6
Representation of the regular ribbon tiling on the 2223 orbifold, 118RT.
The twofold sites are labelled QA, QB and QC , the threefold site is at QT .
The edge is from QT to QC.



3.3. Embedding 2223

In contrast to the Coxeter and hat cases, stellate orbifolds,

which contain rotation centres, have an unlimited number of

embeddings within ?246. In short, the stellate case leads to a

two-parameter family of orbifold domains. Possible locations

of the rotation centres of a single orbifold domain are confined

to a Euclidean subset of discrete locations in H2, indexed by

the two integer indices in Z� Z. As a result of this ordered

Euclidean subdomain of H2, we may index all possible quad-

rilateral domains of the 2223 orbifold exactly by the indices of

vertices of parallelograms of unit area. (Full details of this

derivation are given in Appendix A. Fig. 37 shows the Z� Z

grid within a �=3 sector of the discretization of H2 by 2223.)

Each distinct embedding of a 2223 stellate orbifold into the

?246 tiling ofH2 leads to a distinct embedded free tiling ofH2,

following the prescription for tile edges given in Fig. 6. Recall

that the 2223 regular free tiling is formed by decorating the

orbifold by a single edge (Fig. 6). For convenience, we need

only specify the generator defining the midpoint of this edge

(i.e. the coprime pair located at Q0C, cf. Appendix A) to

determine our embedded pattern. We list the free tilings by

twice the length of this asymmetric unit (since the edge unit

shown in Fig. 6 is half of the distance between ?3 sites, the full

edge length), as the reference frame definitions are not

unique, but the length of the edge will remain fixed in all

incarnations. We therefore enumerate all coprime integer

pairs and calculate resulting edge lengths from standard

hyperbolic geometry to specify all examples of regular

degree-3 free tilings. This also allows us to order all examples

in a one-parameter family, by increasing edge length. Hyper-

bolic trigonometry gives exact integer solutions for most

lower-order cases. This is not possible for one example, edge

length cosh�1
ð675Þ, which is approximated from a numerical

computation of the edge length as cosh�1
ð675:002Þ.

The shortest-edge members of this stellate family in fact lift

to higher symmetries, owing to their regular shape. The

simplest example, formed when Q0C (the edge midpoint) is

located at the f0; 1g site, or equivalently f1; 0g (Fig. 37), has

symmetry group ?2223. The next member, with Q0C located at

f1; 1g, also has extra symmetry (2?23). All subsequent

members have symmetry group 2223. Exhaustive enumera-

tion of all stellate examples therefore also yields the Coxeter

and hat cases discussed above.

The first exact members of the family of degree-3, regular,

dense free tilings commensurate with ?246 are tabulated and
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Figure 9
Images of the eight simplest embedded degree-3 regular ribbon tilings, with names given below the images.



illustrated in Fig. 9. The family converges to a simple tiling

with edges of infinite length, containing a single degree-3

vertex.

4. Degree-3 interpenetrating networks

Just as planar 2-periodic patterns in the Euclidean plane can

be ‘rolled up’ to form 1-periodic patterns on the surface of a

cylinder, these regular (6-periodic) free tilings of H2 can be

projected onto the surfaces of the P, D and gyroid via a

covering map, to give 3-periodic free tilings of these TPMSs.

This process is described in detail in Ramsden et al. (2009) and

Evans (2011). The edges and vertices of these tilings define

TPMS reticulations. The reticulation is embedded both on the

TPMS and in E3; the latter embedding defines a pattern of

nets in E
3. To construct these reticulations, we map the

decorated asymmetric domain (corresponding to a single

orbifold) of H2 (via the related domain of S2) to an asym-

metric (orbifold) domain of the TPMS, using the integral

Weierstrass–Enneper equations that define the surface

embedding in E3 (Fogden & Hyde, 1992).

The isometries of the surface orbifold build the infinite

surface; these (hyperbolic) isometries correspond – in most

cases – to three-dimensional Euclidean isometries, so that an

orbifold on a surface is equivalent to a three-dimensional

space group. This correspondence is weakened on the gyroid,

since – in contrast to the P and D surfaces – the hyperbolic

reflections (?2 and ?3 isometries etc.) are not realized on this

surface as Euclidean isometries. Therefore all Coxeter and hat

tilings on the G (such as the ?2223 and 2?23 free tilings)

embed with Euclidean symmetries given by the related stellate

orbifold, formed by retaining only the rotation centres (2223).

The correspondence between the H2 orbifold symmetry and

the related space groups for the simpler TPMSs will be

published in detail elsewhere (Hyde et al., 2013). A summary

of the space groups corresponding to the orbifolds used in this

paper is given in Appendix B.

Acta Cryst. (2013). A69, 241–261 Evans, Robins and Hyde � Periodic entanglement I 247

research papers

Figure 10
The vertices and edges of a free tiling contained within one fundamental
domain in H2 are transferred to the corresponding patch on each TPMS.
The correspondence between a patch in H2 and a patch on each of the
surfaces is shown for the stellate symmetry group 2223.

Figure 11
(Top) The Coxeter (?2223) ?246124RTðcosh�1

ð3ÞÞ regular, dense degree-3
ribbon tiling of H2. (Middle) The projection of this tiling to (from left to
right) the P, D and G (gyroid) surfaces. (Bottom) Resulting network
structures in E3: from left to right P124RTðcosh�1

ð3ÞÞ, D124RTðcosh�1
ð3ÞÞ

and G124RTðcosh�1
ð3ÞÞ. Details of these structures are found in Tables 1, 2

and 3.

Figure 12
(Top) The hat (2?23) ?246129RT ðcosh�1

ð5ÞÞ regular, dense degree-3
ribbon tiling of H2. (Middle) The projection of this tiling to (from left
to right) the P, D and G surfaces. (Bottom) Resulting network
structures in E3: from left to right P129RTðcosh�1

ð5ÞÞ, D129RTðcosh�1
ð5ÞÞ

and G129RT ðcosh�1
ð5ÞÞ. Details of these structures are found in Tables 1, 2

and 3.



The correspondence between a single copy of the 2223

orbifold in H2 and the related patch on each of the TPMSs is

shown in Fig. 10. The other symmetry groups can be inferred

from this, e.g. ?2223 occupies half of a 2223 domain.

The covering map for the gyroid is a special case, owing to

the fact that the surface contains no (Euclidean) reflection

symmetries corresponding to the hyperbolic reflections of the

?246 group. For this surface, there are two distinct covering

maps of the surface for tilings in H2 that are commensurate

with ?246 (Robins et al., 2005). Tilings in H2 that are achiral

(unchanged under any of the ?246 reflections, apart from

possible rotations or translations) will render two identical

structures on the surface and hence in E3, and tilings that do

not have this inherent symmetry will have two distinct

embeddings. Since the Coxeter and hat tilings are achiral, just

one Euclidean pattern is generated for each tiling on the

gyroid; however, all the stellate hyperbolic tilings give a pair of

patterns in E3. These two covering maps can be distinguished
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Table 1
Multiple nets that result from dense ribbon tilings on the P surface.

‘# comp.’ is the number of connected components, n� designates infinitely many 2-periodic layers with n orientations. The net topologies are labelled as follows: h is
the theta graph; tet, cub denote the polyhedral graphs of tetrahedron and cube edges; hcb is the 2-periodic hexagonal net; srs is the 3-periodic regular degree-3 net
(names adopted from O’Keeffe et al., 2008). Listings of link types and counts (e.g. 92 Hopf links) are generated by analysis using the TOPOS package (Blatov,
2006), m-m-rings refers to the pairwise interaction of rings of length m.

Structure Figure # comp. Topology Notes

P124RT ðcosh�1
ð3ÞÞ Fig. 11 1 cub No catenation between disjoint nets

P129RT ðcosh�1
ð5ÞÞ Fig. 12 8 srs Chiral (all nets like-handed), class IIIb, 10-10-rings: 92 Hopf links

P118RT ðcosh�1
ð15ÞÞ Fig. 13 4� hcb h111i orientations, 6-6-rings: 18 Hopf links

P118RT ðcosh�1
ð53ÞÞ Fig. 14 8 srs Chiral, class IIIb, 10-10-rings: 168 Hopf links, 16 higher-order links

P118RT ðcosh�1
ð99ÞÞ Fig. 14 64 srs Chiral, class Ib, 10-10-rings: 832 Hopf links and 25 higher-order links

P118RT ðcosh�1
ð195ÞÞ Fig. 14 1 cub Hopf links

P118RT ðcosh�1
ð675ÞÞ Fig. 14 64 srs Chiral, class Ib, 10-10-rings: 1442 Hopf links and 181 higher-order links

P118RT ðcosh�1
ð725ÞÞ Fig. 14 8 srs Chiral, class IIIb, 10-10-rings: 118 Hopf links and 93 higher-order links

Table 2
Multiple nets that result from dense ribbon tilings on the D surface.

See Table 1 for details.

Structure Figure # comp. Topology Notes

D124RT ðcosh�1
ð3ÞÞ Fig. 11 4 srs Chiral, class Ib, 10-10-rings: 36 Hopf links

D129RT ðcosh�1
ð5ÞÞ Fig. 12 1 tet No catenation between disjoint nets

D118RT ðcosh�1
ð15ÞÞ Fig. 13 4� hcb h111i orientations, 6-6-rings: 12 Hopf links

D118RT ðcosh�1
ð53ÞÞ Fig. 15 32 srs Chiral, class IIIb, 10-10-rings: 426 Hopf links, 16 higher-order links

D118RT ðcosh�1
ð99ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 90 Hopf links, 24 higher-order links

D118RT ðcosh�1
ð195ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 472 Hopf links, 62 higher-order links

D118RT ðcosh�1
ð675ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 84 Hopf links, 30 higher-order links

D118RT ðcosh�1
ð725ÞÞ Fig. 15 4 srs Chiral, class IIIb, 10-10-rings: 896 Hopf links, 242 higher-order links

Table 3
Multiple nets that result from dense ribbon tilings on the G surface.

See Table 1 for details.

Structure Figure # comp. Topology Notes

G124RT ðcosh�1
ð3ÞÞ Fig. 11 2 srs Chiral, class Ia, 10-10-rings: 18 Hopf links, 1 higher-order link

G129RT ðcosh�1
ð5ÞÞ Fig. 12 2 srs Chiral, class IIa, 10-10-rings: 23 Hopf links, 3 higher-order links

Gþ118RT ðcosh�1
ð15ÞÞ Fig. 13 4� hcb h111i orientations, 6-6-rings: 30 Hopf links

G�118RT ðcosh�1
ð15ÞÞ Fig. 13 1 h No catenation between disjoint nets

Gþ118RT ðcosh�1
ð53ÞÞ Fig. 16 54 srs Chiral, class IIIb (3 � 3 � 3) � 2, 10-10-rings: 725 Hopf links, 19 higher-order links

G�118RT ðcosh�1
ð53ÞÞ Fig. 16 2 srs Chiral, class IIa, 10-10-rings: 25 Hopf links, 17 higher-order links

Gþ118RT ðcosh�1
ð99ÞÞ Fig. 16 54 srs Chiral, class Ib (6 � 3 � 3), 10-10-rings: 728 Hopf links, 25 higher-order links

G�118RT ðcosh�1
ð99ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 30 Hopf links, 17 higher-order links

Gþ118RT ðcosh�1
ð195ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 598 Hopf links, 61 higher-order links

G�118RT ðcosh�1
ð195ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 102 Hopf links, 23 higher-order links

Gþ118RT ðcosh�1
ð675ÞÞ Fig. 16 54 srs Chiral, class Ib (6 � 3 � 3), 10-10-rings: 1092 Hopf links, 140 higher-order links

G�118RT ðcosh�1
ð675ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 116 Hopf links, 37 higher-order links

Gþ118RT ðcosh�1
ð725ÞÞ Fig. 16 54 srs Chiral, class IIIb (3 � 3 � 3) � 2, 10-10-rings: 1139 Hopf links, 246 higher-order links

G�118RT ðcosh�1
ð725ÞÞ Fig. 16 2 srs Chiral, class IIa, 10-10-rings: 168 Hopf links, 56 higher-order links



in Fig. 10 by placing the hyperbolic

pattern on the outward-facing (green)

or the inward-facing (purple) of the

highlighted surface domain, respec-

tively.

In general, the infinite collection of

disjoint degree-3 trees in H
2 (the

hyperbolic forest) projects to a collec-

tion of interpenetrating nets in E3. Since

all the trees in the forest are symme-

trically identical, and the placement of

each tree is identical in the TPMS, the

patterns in E
3 must be made up of

identical disjoint component nets. What

are these possible nets? Regular, free

degree-3 ribbon tilings with symmetry

groups ?2223, 2?23 and 2223 have

vertices at all ?6 sites. Those sites are

the singular ‘flat points’ of the minimal

surfaces; Hopf’s index theorem implies

that there are eight of these per

primitive unit cell of the oriented

TPMS (Hyde, 1989; Fischer & Koch,

1987). Since the tilings are regular

(1-transitive), they have symmetrically

identical edges and vertices both in H2

and on the TPMS. The curvilinear

‘e-nets’ (Ramsden et al., 2009) induced

by the surface reticulations are there-

fore regular. Straightening edges to form a barycentric

embedding can never increase the transitivity, since this

process symmetrizes the net embedding in E3 as far as possible

(Delgado-Friedrichs & O’Keeffe, 2003). The nets in E3 are

therefore also regular. Regular degree-3 nets in E3 are the

3-periodic srs net (Delgado Friedrichs et al., 2003), the

2-periodic hcb (f6; 3g) net (O’Keeffe et al., 2008), a 1-periodic

chain multi-graph, with three edges between successive

vertices and the 0-periodic (finite) graphs of tetrahedron (tet),

cube (cub) and dodecahedron edges. The dodecahedron edge

graph cannot result from these regular forests, since a

maximum of eight vertices per unit cell are allowed. One

further finite graph is possible, the theta graph (h), with just

two degree-3 vertices. (Though the non-simple theta graph is

technically not a net, for convenience here we label it as such.)

The regular degree-3 ribbon tilings therefore afford a

systematic technique to enumerate the simplest entangle-

ments of h, tet, cub, hcb and srs nets. The resulting patterns are

described in the following section.

4.1. Structure of the Euclidean degree-3 nets

Recall that these regular free tilings necessarily form

Euclidean intergrowths of identical nets. So these patterns are

characterized topologically by the component net type and

number of disjoint components. This information is obtained

using either GAVROG (Delgado-Freidrichs, 2012) or TOPOS

(Blatov, 2006) software that affords identification of net

topology with reference to a library of structures (excluding

the finite graphs, which we identify by eye from three-

dimensional representations of the structures). For our

entangled structures, edges are permitted to curve as they

trace from one vertex to another. An input file for either

GAVROG or TOPOS has vertices connected by straight

edges, thus it is necessary for us to introduce additional

degree-2 vertices along the curved edges in order to maintain

the entanglement. As a consequence, GAVROG fails to

identify these exact structures as e.g. srs. However, TOPOS

can be used to identify net topology, provided essential added

degree-2 vertices are not included in the analysis. The

supplementary material contains crystallographic data

suitable for TOPOS input for all structures presented in this

paper: we include one set of data with a minimal number of

additional degree-2 vertices necessary to maintain the entan-

glement, and another set with many additional degree-2

vertices to show the complete edge geometry.2

Quantitative analysis of these structures requires descrip-

tors for the entanglement between nets. (And potentially

within individual nets, as discussed in x7 below.) Here we

provide the measures developed by Blatov, Proserpio et al. to

characterize intergrown nets identified in atomic and mole-
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Figure 13
(Top) The shortest-edge member of the stellate (2223) ?246118RTðcosh�1

ð15ÞÞ regular, dense
degree-3 ribbon tiling ofH2. (Middle) The projection of this tiling to (from left to right) the P, D and
G surfaces (both covering maps). (Bottom) Resulting network structures in E3: from left to right
P118RTðcosh�1

ð15ÞÞ, D118RTðcosh�1
ð15ÞÞ, Gþ118RT ðcosh�1

ð15ÞÞ and G�118RTðcosh�1
ð15ÞÞ. Details of these

structures are found in Tables 1, 2 and 3.

2 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: EO5019). Services for accessing these data are described
at the back of the journal.



cular crystals (Carlucci et al., 2003; Blatov, 2006) and available

as output from TOPOS (Blatov, 2006). These are:

(i) The number of connected components.

(ii) Symmetry relations between distinct components. For

the structures referred to in this paper, the classes can be listed

as follows. Class I has only translations: Ia has one translation

and Ib has two independent translations. Class II has only

rotations: IIa has one distinct rotation and IIb has two distinct

rotations. Class III has both translations and rotations: IIIa has

a single translation and single rotation, IIIb has multiple

translations and a single rotation, IIIc has a single translation

and multiple rotations, and IIId has multiple translations and

rotations.

(iii) Entanglement of all cycles of a given size. The entan-

glements are characterized as either Hopf links (Adams, 2004)

or higher-order links, which encompasses all links with a

higher crossing number. The number of links considers a

single cycle of the structure, and counts the number and types

of links passing through this cycle. This measure is a useful

guide to distinguishing between distinct entanglements that

necessarily have different numbers.

We summarize the resulting structures in Tables 1, 2 and 3,

and provide images for these in Figs. 11–16. The structures are

labelled with the tiling name (cf. x3) as well as the TPMS. For

example, the Euclidean pattern that results from projection of

the �246118RTðcosh�1
ð15ÞÞ tiling to the P surface is labelled

P118RTðcosh�1
ð15ÞÞ. Owing to the pair of distinct Euclidean

patterns that arise on the gyroid from chiral hyperbolic tilings

(from the stellate cases only, i.e. G118RT), a superscript þ or �

is appended to specify which member of the two possible

covering maps of the surface is used (Robins et al., 2005).

(Where this is absent, the þ and � structures are identical.)

The multiple nets that emerge from this construction are

mostly entangled srs patterns. Each surface reticulation gives a

single example of a (non-threaded) lattice of finite nets, as well

as one 2-periodic entangled (hcb) example. All other cases

within this finite enumeration contain entangled equivalent

enantiomers of multiple srs nets, from two components to 54.

Remarkably, all examples of multiple srs nets have distinct

entanglement modes according to the link counts of TOPOS.

The enumeration reveals for example six distinct entangle-

ments of pairs of enantiomeric srs nets, all regular ribbon

tilings on the gyroid.
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Figure 14
The stellate (2223) ?246118RT regular, dense degree-3 ribbon tiling family,
each on a unit cell of P surface. Below each surface reticulation are views
of a single component of the net embeddings in E3. (The names of the
structures are shown below each image.) Details of these structures are
found in Table 1.

Figure 15
The stellate (2223) ?246118RT regular, dense ribbon degree-3 tiling family,
each on a unit cell of the D surface. Below each surface reticulation are
views of a single component of the net embeddings in E3. (The names of
the structures are shown below each image.) Details of these structures
are found in Table 2.



It is clear from Tables 1, 2 and 3 that the number of

threaded components is not directly correlated with the free

tiling edge length. The degree of entanglement can be gauged

in part by the link counts listed in Tables 1, 2 and 3: the

multiple nets with large numbers of links are more tangled.

Those numbers do not increase monotonically for successive

members of the stellate family, indicating that entanglement is

not simply a function of the edge length of the component

trees. That is also clear from Figs. 14, 15 and 16 which show

that the homotopy, or degree of winding

(curvature and torsion), of the edges of

component nets in E
3 varies in a

complex manner as edge lengths grow.

These effects are too complex to analyse

in detail here.

5. Degree-4 examples

We have focused thus far on dense

degree-3 examples. The technique is,

however, more generally applicable. For

example, regular, dense degree-k ribbon

tilings exist in H2 for all integer values

of k exceeding 2, with solutions within

the Coxeter, hat and stellate classes,

namely ?222k, 2?2k and 222k. Some,

though not all, of those orbifolds are

found as commensurate translationally

periodic subgroups of the P, D, gyroid

and H TPMSs. We describe here some

aspects of degree-4 and degree-6

regular ribbon tilings, sufficient we hope

to guide the reader to the broader

universe of these patterns that we

cannot cover exhaustively here. These

patterns are formed by reticulating P, D

and G TPMSs (degree-4 and degree-6

ribbons) and the hexagonal H surface

(degree-6 ribbons).

The correspondences between two-

dimensional hyperbolic orbifolds on the

TPMSs and three-dimensional Eucli-

dean space groups are listed in

Appendix B. Since the degree-4 and 6

reticulations on the cubic TPMSs are

subgroups of the full hyperbolic

symmetries, they form tetragonal and

rhombohedral patterns, respectively.

(Though in some cases they can be

further symmetrized in E
3 without

changing their entanglements, to form

cubic patterns.)

Consider degree-4 examples, which

result from free tilings on the P, D and

gyroid TPMSs. Fig. 17 shows the degree-

4 ribbon tilings in H2 that form from

Coxeter and stellate orbifolds [?2224
(group 123) and 2224 (group 114)].

The ?2224 orbifold contains three copies of the ?246
orbifold. Whereas the degree-3 Coxeter ribbon tiling has a

single embedding within the ?246 discretization of H2 due to

the automorphism of ?246 that exchanges the two edges

linking ?3 and ?2 sites, the degree-4 tiling has two possible

embeddings, given by the two edges linking ?4 and ?2 sites

that are not related by an automorphism. The two embeddings

of the decorated ?2224 orbifold into ?246 are illustrated in
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Figure 16
The stellate (2223) ?246118RT regular, dense degree-3 ribbon tiling family, each on a unit cell of the
G surface. Below each surface reticulation are views of a single component of the net embeddings in
E

3. (The names of the structures are shown below each image.) Details of these structures are found
in Table 3.



Fig. 17. In contrast to the degree-3 case, the hat

orbifold relevant to degree-4 tilings, 2?24, is

forbidden in our schema, as it does not preserve

the full set of translation symmetries of the cubic

TPMSs.

An infinite number of degree-4 stellate tilings

with orbifold 2224 are possible. That follows

from generalization of the 2223 cases discussed

in x3.3. The argument developed in Appendix A

holds for all 222k orbifolds, where k> 2. The

rotational symmetry at each k-fold vertex

(analogous to QC) confines the location of the

(Q0C) generator to a restricted radial sector

{subtending an angle of 2�=k at QC, equivalent

to inserting ½ðk� 2Þ��=k disclinations into the flat Euclidean

plane}. Hence any 222k discretization of H2 has vertices QC0

and QA0 located within a subdomain ofH2 that is equivalent to

the 2222 discretization of E2 within a 2�=k sector. We illus-

trate the first five in Fig. 17.

The embeddings of these orbifolds are illustrated in Fig. 18.

As in the degree-3 case, the two covering maps of the G

surface correspond to placing the hyperbolic pattern on the

front or back sides (green or purple side up) of the highlighted

surface domain.

A priori, these tilings must form patterns composed of

regular degree-4 nets, namely 3-periodic dia, 2-periodic sql

layer nets, 1-periodic 4-chains or finite oct (octahedral edge)

nets. As in the degree-3 case, generic patterns are entangled

3-periodic nets: here dia nets. The patterns formed in E3 are

listed in Table 4. In contrast to the degree-3 examples, finite

unentangled oct nets are not formed among the lower-order

members and a 1-periodic (4-chain) example is found.

For example, Fig. 19 shows two structures, each containing

four entangled dia nets, whose entanglements are distinct,

according to the TOPOS link count (Table 4).

In contrast to the degree-3 examples, the entanglements of

dia nets are not necessarily unique for each free tiling. Fig. 20

shows an example of a reticulation on the G surface of a pair

of catenated dia nets, which is likely

equivalent to entanglements on the

D and G surfaces with equivalent

topology: the TOPOS output for these

four examples is insufficient to establish

the equivalence of these entanglements,

since distinct ambient isotopic classes

may have identical output. Other

approaches are needed (and one

possible route is discussed below). In

these cases, however, it is clear that the

edges can, in all cases, be straightened

without edges passing through each

other to form what is, by inspection,

most likely a common entanglement of

two dia nets.

6. Degree-6 examples

Regular, dense ribbon tilings of H2 can

be constructed on ?2226, 2?26 and

2226 orbifolds. These cases are worth

cursory description as they can be

realized on both cubic TPMSs and the

hexagonal H surface. Tilings of the

latter TPMS have not been system-

atically developed to date. For example,

the online catalogue of tilings, Epinet,

has so far analysed only Coxeter tilings

of the P, D and G surfaces (Hyde et al.,

2010).
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Figure 17
(Left) Delaney–Dress representations of degree-4 regular ribbon tilings of (top) ?2224 and
(bottom) 2224 orbifold domains (bounded by blue polygons) with vertices and edges shown in
black (cf. Fig. 4). (Right) The free tilings of H2. The first row is the Coxeter embeddings, the second
illustrates the first three members of the infinite family of stellate examples.

Figure 18
The correspondence between a patch in H2 and a patch on each of the surfaces is shown, for the
stellate orbifold 2224 on the (left to right) P, D and G surfaces.

Table 4
Regular, dense degree-4 ribbon tilings.

See Table 1 for details.

Structure Figure # comp. Topology Notes

P123RT ðcosh�1
ð5ÞÞ 1* sql Parallel array

P123RT ðcosh�1
ð7ÞÞ 1 4-chains Parallel 1-periodic degree-4 chains

P114RT ðcosh�1
ð11ÞÞ Fig. 19 4 dia Class IIIa, 6-6-rings: 18 Hopf links

P114RT ðcosh�1
ð107ÞÞ Fig. 19 4 dia Class IIIa, 6-6-rings: 59 Hopf links,

3 higher-order links
D123RT ðcosh�1

ð5ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links
D114RT ðcosh�1

ð11ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links
G123RT ðcosh�1

ð5ÞÞ Fig. 20 2 dia Class IIa, 6-6-rings: 6 Hopf links
G123RT ðcosh�1

ð7ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links



The hexagonal genus-3 TPMS, discovered by Schwarz and

known as the H surface (Schoen, 1970), has two-dimensional

orbifold ?2226, as shown in Fig. 21 (Hyde, Ramsden et al.,

2003). A list of two-dimensional groups that conserve all

translational isometries of the surface has been determined

(Robins et al., 2004b). In contrast to the cubic examples above,

the H surface embeds in E3 with a one-parameter family of

lattices, characterized for example by the ratio of c=a para-

meter for the hexagonal unit cell. This flexibility is found too

in the two-dimensional group, since the shape of the ?2226
orbifold itself has one degree of freedom (Hyde, Ramsden et

al., 2003).

In common with the degree-4 Coxeter example (?2224) on

the cubic TPMSs, two distinct degree-6 Coxeter ribbon tilings

can be constructed on the H surface with a symmetry group of

?2226 (Fig. 23). This orbifold cannot be realized on the cubic

TPMSs. Among the subgroups of the Coxeter ?2226 pattern

related to dense, regular ribbon tilings, analogous to the

degree-3 and 4 cases discussed above, the hat orbifold (2?26)

also contains all the full translation subgroups of the P, D and

G surfaces (Robins et al., 2004a), though it is not commen-

surate with translations of the H surface. The related stellate

orbifold (2226) maps onto the cubic and hexagonal surfaces,

affording a wealth of potential patterns

(Robins et al., 2004a,b). One possible

embedding of this orbifold in the cubic

and hexagonal surfaces is illustrated in

Fig. 22.

Projection of these degree-6 tilings

must result in multiple regular nets of

degree-6 in E3, with exactly two vertices

per translational unit cell of each of

the TPMSs. Possible net topologies are

3-periodic pcu, 2-periodic hxl compo-

nents, arrays of 1-periodic chains of

degree-6 vertices (6-chains) or finite

(non-simple) graphs with two vertices of

degree-6. The nets that emerge are

listed in Table 5. The edge-length

calculations for the H surface tilings are

complicated by the degree of freedom

in the ?2226 domain, as this implies that

the edge lengths are not uniquely

defined. We work around this by giving

an edge length for the symmetrized ?2226 domain to be a

gluing of the ?24ð12Þ tiling (giving the quadrilateral domains

illustrated in Fig. 22), for which the edges are uniquely

defined. However, the symmetrization means that there are

often two distinct tilings with the same edge length, thus we

distinguish these with a further number 1 or 2.

As in the degree-3 and 4 cases, the predominant patterns

contain multiple 3-periodic nets; here consisting of pcu

components, though 2-periodic hxl nets and 1-periodic

6-chains are also generated, as shown in Fig. 23.

In contrast to the lower-degree tilings, the degree-6

ribbon tilings also yield examples of 3-periodic nets containing

just a single component (Fig. 24). These single-component

pcu structures [P93RTðcosh�1
ð15ÞÞ, D93RTðcosh�1

ð15ÞÞ and

Gþ93RTðcosh�1
ð15ÞÞ] are equivalent by ambient isotopy to the

usual (untangled) barycentric embedding of pcu. Other

regular tilings of the cubic surfaces consist of two inter-

penetrating pcu components that are equivalent entangle-

ments [P122RTðcosh�1
ð17ÞÞ (Fig. 24), D122RTðcosh�1

ð49ÞÞ and

G122RTðcosh�1
ð17ÞÞ].

The D93RTðcosh�1
ð63ÞÞ and G122RTðcosh�1

ð49ÞÞ patterns

contain four pcu components and are also distinct entangle-

ments. The H surface structures [H31RTðcosh�1
ð26:9ÞÞ and
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Figure 19
(Top) The stellate (2224) tiling P114RT ðcosh�1

ð11ÞÞ that forms four catenated dia nets. (Bottom)
Another stellate pattern, P114RTðcosh�1

ð107ÞÞ, also contains four interpenetrating components of
dia. Single adamantane cages of each disjoint component are also illustrated. These are not
equivalent entanglements.

Figure 20
The Coxeter (?2224) tiling G123RTðcosh�1

ð5ÞÞ forms a pair of catenated
dia nets.

Figure 21
(Left) The Coxeter ?2226 tiling of H2 represented on the Poincaré disc
model. (Right) The H minimal surface decorated by the same tiling. Each
tile defines an asymmetric patch on the surface and tile edges are mirror
lines.



H31RTðcosh�1
ð154:9Þ : 2Þ] form patterns containing three

interpenetrating pcu nets that are distinct entanglements,

illustrated in Fig. 25.

7. Towards canonical embeddings of entangled nets

The powerful concept of barycentric placement, developed by

Delgado-Friedrichs & O’Keeffe (2003), can be used to form a

geometric realization of a net – an embedding in E3 – from its

topology alone. That approach effectively ‘untangles’ any net

embedding formed on a TPMS, giving an embedding with

straight edges (Hyde & Delgado-Friedrichs, 2011; Castle et al.,

2011). In mathematical terms, the ambient isotopy class of the

net embedding on the TPMS is not necessarily the same as

that given by a barycentric embedding.3 In practical terms, this

means that an embedding via barycentric placement may have

different edge crossings than the original edge pattern on the

TPMS, and the process of straightening the edges requires

edges to pass through each other to form the relaxed

embedding induced by barycentric

placement. This standard embedding

therefore, while indispensable to char-

acterization of a net topology, does not

characterize (or preserve) entangle-

ment. Entanglement of many compo-

nents is a more subtle concept still.

A recent paper offers partial resolu-

tion of this issue for multiple nets,

allowing numerical signatures for

simpler entanglements, containing

links (Alexandrov et al., 2012). This

approach, while useful, is unable to

classify generic patterns whose entan-

glements are not necessarily induced by

links. We describe here a novel

approach that allows entanglement to
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Table 5
Regular, dense degree-6 ribbon tilings.

See Table 1 for details.

Structure Figure # comp. Topology Notes

H32RT ðcosh�1
ð13:9Þ : 1Þ Fig. 23 1 6-chains Parallel 1-periodic 6-chains

H32RT ðcosh�1
ð13:9Þ : 2Þ Fig. 23 1� hxl Parallel array

H31RT ðcosh�1
ð26:9ÞÞ Fig. 25 3 pcu Class Ia 4-4-rings: 8 Hopf links. 4-6-cycles: 36 Hopf links. 6-6-cycles: 40 Hopf links

H31RT ðcosh�1
ð154:9Þ : 2Þ Fig. 25 3 pcu Class Ia 4-4-rings: 20 Hopf links. 4-6-cycles: 90 Hopf links. 6-6-cycles: 86 Hopf links and

2 higher-order links
P122RT ðcosh�1

ð17ÞÞ Fig. 24 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links
P93RT ðcosh�1

ð15ÞÞ 1 pcu
D122RT ðcosh�1

ð49ÞÞ 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links
D93RT ðcosh�1

ð15ÞÞ 1 pcu
D93RT ðcosh�1

ð63ÞÞ 4 pcu Class Ib 4-4-rings: 12 Hopf links. 4-6-cycles: 66 Hopf links. 6-6-cycles: 74 Hopf links and
1 higher-order link

G122RT ðcosh�1
ð17ÞÞ 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links

G122RT ðcosh�1
ð49ÞÞ Fig. 24 4 pcu Class IIIa 4-4-rings: 12 Hopf links. 4-6-rings: 72 Hopf links. 6-6-rings: 120 Hopf links

Gþ93RT ðcosh�1
ð15ÞÞ 1 pcu

Figure 22
The correspondence between a single copy of the stellate 2226 orbifold in H2 and a patch on the
TPMS. (Top, from left to right) P, D and G surfaces. (Bottom) H surface.

Figure 23
(Top) One Coxeter (?2226) H32RTðcosh�1

ð13:9Þ : 1Þ degree-6 regular,
dense ribbon tiling in H2, on the H surface and in E3 (from left to right).
The Euclidean embedding consists of parallel 1-periodic 6-chains.
(Bottom) The second ?2226 H32RTðcosh�1

ð13:9Þ : 2Þ tiling, which forms
parallel layers of 2-periodic hxl nets.

3 Any embedding of the abstract ‘barycentric placement’ is equivalent, since
the embeddings are all equivalent within an affine transformation (Delgado-
Friedrichs & O’Keeffe, 2003), which conserves ambient isotopy.



be effectively geometrized, just as barycentric placement leads

to a useful geometrical realization of a net topology.

Our approach builds on the concept of a ‘tight embedding’

from knot theory that often – though by no means always –

affords a unique and therefore canonical embedding for

conventional knots and links (Stasiak et al., 1998). Tight or

‘ideal’ embeddings of knots are formed as follows. The algo-

rithm searches for knot conformations that minimize the knot

length for a given diameter (L=D). Assume all filaments have

a fixed diameter, D, that filaments can never overlap except

along lines or at isolated points (they touch tangentially) and

that they have infinite flexibility and zero friction. These

assumptions are easily implemented numerically. The ‘ideal’

or ‘tight’ configuration of the knot is that which minimizes the

ratio L=D. A fast and effective algo-

rithm for finding this minimum is the

SONO algorithm (Pieranski, 1998).

Here we extend this notion to find

ideal embeddings of (multiple) nets. To

do this, we generalize the SONO algo-

rithm to allow for periodic boundary

conditions and minimize L=D within

one unit cell. Some further extensions of

the SONO algorithm are required to

allow tightening of multiple nets, owing

to the presence of branched vertices.

This adapted algorithm is explored in

detail in Evans (2011) and we refer to it

as PB-SONO throughout this paper.

The PB-SONO algorithm forms

embeddings of simple knots that

are very similar to those found with

the simpler SONO algorithm, shown

by comparable L=D values (Evans,

2011). Further, tightening of arbitrary

(untangled) isotopes of regular single-

component nets by PB-SONO forms

high-symmetry patterns, as expected.

(Some discrepancies are unavoidable

due to the vertices, where edges

must overlap; however these can be

effectively removed by judicious

discretization of the net edges.) Some

examples are shown in Fig. 26. These

ideal embeddings correspond (within

the numerical uncertainty of the algo-

rithm) to the most symmetric embed-

dings of these regular nets (i.e.

symmetrically identical edges and

vertices).
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Figure 24
(Top) The hat (2?26) P122RTðcosh�1

ð17ÞÞ degree-6 regular, dense ribbon
tiling shown in H2, on the P surface and in E3 (from left to right). The
Euclidean pattern consists of two interpenetrating components of pcu.
(Bottom) The G122RT ðcosh�1

ð49ÞÞ tiling that forms four interpenetrating
pcu nets.

Figure 25
(Top) An H31RT ðcosh�1

ð26:9ÞÞ regular, dense stellate (2226) ribbon tiling (2226) in H2, on the H
surface and in E3 (from left to right), where it forms three interpenetrating pcu nets. (Bottom) A
higher-order 2226 tiling [H31RT ðcosh�1

ð154:9Þ : 2Þ] that also builds three interpenetrating pcu nets.
Single cub nets excized from each component are shown for each pattern, revealing distinct
entanglements, confirmed by TOPOS link analyses.

Figure 26
Ideal embeddings of untangled isotopes of the cub, srs, dia and pcu nets found numerically using the
PB-SONO algorithm. The diameter of edges of the ideal structure has been decreased in all cases to
illustrate their edge geometry: the true ideal embedding has maximally inflated edges.

Figure 27
Ideal embeddings of two tangled isotopes of the cub net.



In contrast, tangled isotopes form

geometrically distinct embeddings in E3

after tightening with PB-SONO. Fig. 27

shows two ideal embeddings of tangled

cube isotopes, discussed in detail in

Hyde & Schröder-Turk (2007). Clearly,

these isotopes adopt distinct embed-

dings and differ from the untangled

isotope embedding.

These examples have unique tightest

configurations, thereby allowing cano-

nical embeddings of isotopes that

respect both their topology and entan-

glement. In general, uniqueness is not

assured (an unfortunate feature that is

also observed in classical links; Cantar-

ella et al., 2002). However, this approach

affords a very useful ‘canonical’

embedding for the multiple nets formed

from ribbon tilings.

Consider tightening multiple nets

from starting embeddings formed by the

TPMS reticulations. For example, ideal

embeddings of 4 and 8 srs nets from the

D124RTðcosh�1
ð3ÞÞ and P129RTðcosh�1

ð5ÞÞ

ribbon tilings are illustrated in Fig. 28.

These embeddings afford useful and

reasonable canonical configurations for

these entanglements of (untangled) srs

nets. For example, the srs nets in both of

these tight embeddings are regular,

adopting the familiar symmetrized

(barycentric) form of cubic srs.

Similarly, tight embeddings of

multiple pcu and dia (untangled)

isotopes converge to embeddings whose

individual component nets are also

regular, as shown in Fig. 29.

This may appear a very convoluted

route to embedding multiple nets.

Indeed, many of these multiple srs, dia

and pcu nets have already been

described by Wells (1977) and others,

and catalogued by O’Keeffe et al. (2008). However, these

examples, while not novel, illustrate the utility of the tigh-

tening approach in forming canonical embeddings of multiple

nets.

The approach is most powerful when analysing novel

entanglements, a situation that has not been considered to

date by structural chemists. Consider, for example, the pair of

srs nets that result from the G124RTðcosh�1
ð3ÞÞ and

G129RTðcosh�1
ð5ÞÞ ribbon tilings (shown in Figs. 11, 12). Tigh-

tening of those patterns using the PB-SONO algorithm results

in two very distinct embeddings, even though both patterns

consist of a pair of interwoven srs nets. The ideal embeddings

are shown in Fig. 30. Here the tightening algorithm offers two

useful results. First, the geometric differences between these

two tight embeddings confirm that they are distinct entan-

glements. Second, the algorithm gives a canonical embedding

of the new entangled pattern that emerges from the

G129RTðcosh�1
ð5ÞÞ tiling. Interestingly, the crystallographic

data from a synthesized pair of srs nets with equivalent chir-

ality given in Kepert et al. (2000) give a conformation that

matches the ideal form of the G124RTðcosh�1
ð3ÞÞ structure,

which suggests that these ideal conformations are relevant for

chemical frameworks.

The examples shown here are among the simpler patterns.

In many of these cases, a combination of the TOPOS and

GAVROG algorithms allows distinct patterns (with distinct

topologies and/or entanglements) to be distinguished.

However, since TOPOS can only analyse simpler entangle-
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Figure 28
Ideal embeddings of multiple (like-handed) srs nets. (Left to right) Four srs nets from the
D124RTðcosh�1

ð3ÞÞ tiling and eight srs nets from the P129RTðcosh�1
ð5ÞÞ tiling, shown both within one

unit cell to show detail and as a repeated pattern.

Figure 29
Ideal embeddings of untangled isotopes of multiple dia and pcu nets. (Left to right) Two dia nets
from the D123RT ðcosh�1

ð5ÞÞ tiling; four dia nets from the P114RTðcosh�1
ð11ÞÞ tiling; two pcu nets from

the P122RTðcosh�1
ð17ÞÞ tiling; and four pcu nets from the G122RTðcosh�1

ð49ÞÞ tiling. The upper images
show one unit cell of the pattern and the lower images the global pattern.

Figure 30
(Left to right) Ideal embeddings of untangled isotopes that form from the G124RTðcosh�1

ð3ÞÞ and
G129RTðcosh�1

ð5ÞÞ tilings. Both patterns contain a pair of (like-handed) srs nets.



ments and GAVROG identifies net topology rather than

entanglement, generic patterns cannot be well characterized

by these approaches. The PB-SONO algorithm provides an

additional tool for the cases where the other algorithms fail.

7.1. Entangled embeddings of tangles

An additional phenomenon is possible in multiple nets and

present in some higher-order stellate ribbon tilings. That is the

possibility of entangled nets that are themselves tangled.

Recall that ‘untangled’ nets are ambient isotopic to a bary-

centric embedding (Castle et al., 2011). Self-entangled nets

(also known as self-catentated, self-penetrated or self-

knotted) can then be defined with respect to this untangled

‘ground state’, by analogy with the unknotted state of knots,

namely an embedding of a simple unthreaded loop in E3. Self-

entangled net embeddings cannot be transformed into the

untangled barycentric embedding without ‘phantom cross-

ings’, where edges pass through each other.4 For example,

both G�118RTðcosh�1
ð195ÞÞ and Gþ118RTðcosh�1

ð195ÞÞ patterns

contain two srs networks. If we take a single component of

these structures and relax using the PB-SONO algorithm, we

find that these single nets are tangled, since their ideal

embeddings (Fig. 31) are different from the untangled srs ideal

embedding (Fig. 26). Further, since both ideal embeddings are

geometrically distinct, these are distinct isotopes. Clearly,

entangled embeddings of nets that are themselves tangled are

possible, as well as the presence of more complex entangle-

ments beyond knotted and linked cycles, such as ravels (Castle

et al., 2008; Li et al., 2011).

8. Conclusion

We have constructed and characterized a number of inter-

grown regular nets. Our approach introduces the notion of

‘free tilings’ of two-dimensional hyperbolic space (H2) and

then maps those patterns into three-dimensional Euclidean

space (E3) to form a variety of patterns composed of multiply

entangled regular nets. Those maps are the so-called covering

maps from H2 to four genus-3 TPMSs, the (cubic) P, D, G and

(hexagonal) H surfaces. Here we have explored in some detail

one variety of free tilings, composed of ribbon tiles. The

Euclidean patterns that emerge are commonly made up of

3-periodic nets that arise frequently in synthetic chemical

frameworks (Batten & Robson, 1998; O’Keeffe et al., 2000).

We suspect that more complex examples of such nets will

emerge in the future in a variety of materials. We note, for

example, that the most common nets in MOFs include the trio

of 3-periodic nets – srs, dia and pcu – that are the predominant

components of regular ribbon tilings (Ockwig et al., 2005;

Blatov et al., 2004; Alexandrov et al., 2011). Furthermore,

intergrowths of those nets are very common in MOF materials

(Batten & Robson, 1998; Delgado Friedrichs et al., 2003;

Reineke et al., 2000; Wu et al., 2011). This paper has focused on

examples that emerge from regular hyperbolic free tilings,

yielding the most symmetric and simplest patterns accessible

by this technique.

The scope for further enumeration of structures of this kind

is large. The free tilings of H2 that have been considered here

are a fraction of all possible tilings of this kind. Three direc-

tions are immediately apparent: firstly, enlargement of the

current enumeration to include higher-order regular ribbon

tilings (in the stellate class); secondly, to move beyond

patterns that emerge from close-packed trees in H
2; and

thirdly, to extend the analysis to less regular patterns onH2. In

addition, we have somewhat arbitrarily delimited our

enumeration to those cases that give 3-periodic patterns

whose translation groups are identical to those of the

P, D, G and H TPMSs. That constraint can be removed

without significant complication, if one is prepared to

accommodate the resulting combinatorial explosion. In addi-

tion, ribbon tilings commensurate with other TPMSs can be

constructed.

These hyperbolic ribbon tilings have natural dual patterns,

whose tiles are themselves tree-like, and are bounded by an

unbounded number of vertex-free (hyperbolic) lines. Those

tilings result in three-dimensional packing of one-dimensional

‘filaments’ in E3 (Evans & Hyde, 2011). Hybrid free tilings,

with both branched boundary components and infinite

geodesic boundary components, are also possible in H2. These

form intergrowths of nets and filaments in E3 (Castle et al.,

2011). The companion paper to this one is focused on filament

packings (Evans et al., 2013).

APPENDIX A
Embedding of stellate orbifolds

In contrast to the Coxeter and hat cases, stellate orbifolds,

which contain rotation centres, have an unlimited number of

embeddings within the ?246 setting. The stellate case leads to

a two-parameter family of orbifold domains. Possible locations

of the orbifold domain are confined to a Euclidean subset of

H
2, discretized by Z� Z. We describe the reasons for that

here.
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Figure 31
The ideal embeddings of one component of each of the
G�118RTðcosh�1

ð195ÞÞ (left) and Gþ118RTðcosh�1
ð195ÞÞ (right) structures.

The ideal embeddings of both networks are distinct and different to the
untangled embedding of srs (Fig. 26). Therefore all three srs nets are
distinct isotopes and the two shown here are tangled.

4 This terminology is perhaps misleading, since everyday tangles, from rope to
earphone leads, are usually ambient isotopic to the untangled state, and
untangling does not require phantom crossings (or cuts), as the patient
fisherman knows. Our tangled nets are perhaps better described as ‘knotted’.
However, since all nets contain knots, we prefer the ‘tangled’ descriptor to
distinguish knots within nets from knotted nets.



It is convenient here to consider all possible coverings of the

generic stellate orbifold of the form 222k into its universal

cover (E2 if k ¼ 2 and H2 if k> 2). We wish to systematically

generate all distinct coverings of the 222k orbifold into the

covering plane.

Consider first the 24 (2222) orbifold, which covers E2. The

covering is determined by the choice of the four distinct

twofold rotation sites that are the group generators. Fig. 32(a)

shows a covering where the generators are at the positions

f0; 0g, f1; 0g, f1; 1g and f0; 1g of E2. In this case, all rotation

centres of the infinite group are centred at integer coordinates.

Labelling the twofold rotation centres located at f0; 0g, f1; 0g,

f1; 1g and f0; 1g as QT, QA, QB and QC, respectively, the

presentation of the group given by the reference frame is

hfQT ;QA;QB;QCg : ðQAÞ
2
¼ ðQBÞ

2
¼ ðQCÞ

2
¼ ðQT Þ

2
¼ I;QT ¼ QAQBQCi:

Distinct presentations of the same group may be obtained by

defining new generators, Q0T , Q0A, Q0B and Q0C, whose forms are

words of the simpler group (QT , QA, QB and QC) (Coxeter &

Moser, 1972).

A set of possible coverings may be represented through

parallelograms superimposed on the rectilinear Z� Z grid. To

preclude duplication of coverings, we consider only one

quadrant of E2 and fix the twofold rotation QT . We require

that the only isometries of the parallelograms are the twofold

rotations at their vertices consistent with the satellite orbifold.

Further, we impose a condition that will be needed for all non-

Euclidean cases (k 6¼ 2), namely that parallelograms must

have area 1 (i.e. equal in area to the initial reference embed-

ding). InH2, this condition is imposed by the fact that the area

of an orbifold 222k scales as ðk� 2Þ=k and is fixed for fixed k.

(Note that this quadrilateral domain enclosed by the four

distinct twofold rotations is a half of a single 2222 domain; the

full domain has area 2.) These restrictions on placement of

generators are equivalent to satisfying the group relations for

a covering. Fig. 32(b) shows an example of a unit area paral-

lelogram on Z� Z with corners f0; 0g, fr; sg, fpþ r; qþ sg and

fp; qg. Each grid point in the plane represents elements of the

infinite group, hence we may express the corner points of the

parallelogram (with respect to the reference frame) as

Q0A ¼ QBQCQB; Q0C ¼ QB;
Q0B ¼ QBQCQBQAQBQCQB; Q0T ¼ QT :

Since the new generators remain twofold rotation centres,

the group relations ðQ0AÞ
2
¼ ðQ0BÞ

2
¼ ðQ0CÞ

2
¼ ðQ0TÞ

2
¼ I are

satisfied. The other group relation, where Q0AQ0BQ0C must be

equal to Q0T, is also satisfied, hence the generators Q0T, Q0A, Q0B
and Q0C are a covering of the symmetry group of the 2222

orbifold. An analogous argument holds for all other paralle-

logram vertices satisfying the constraints listed above.

To ensure that no additional symmetry points are located on

the boundary of the parallelogram, the Q0C vertex (fp; qg) of

the parallelogram is chosen such that fp; qg are coprime.

Coordinates of the opposite Q0A vertex, fr; sg, are chosen such

that the parallelogram has unit area. The area constraint

implies that ps� rq ¼ 1, giving three degrees of freedom for

all coverings of 2222 into E2 (Castle et al., 2012).

This Euclidean case is readily generalized to hyperbolic

orbifolds of the form 222k (where k> 2). Those orbifolds tile

H
2 rather than E2. Consider, for example, the k ¼ 3 case. As

above, we first choose a specific embedding of the orbifold,

our reference frame in H2, which consists of the four group

generators: QT , QA, QB and QC (Fig. 33a). The group relations

for the 2223 symmetry group are given by

hfQT ;QA;QB;QCg : ðQAÞ
2
¼ ðQBÞ

2
¼ ðQCÞ

2
¼ ðQT Þ

3
¼ I;QT ¼ QAQBQCi:

Fig. 33(b) shows an alternative quadrilateral whose vertices

are elements of the infinite group 2223. To establish if these

vertices (Q0A, Q0B, Q0C and Q0T) are alternative rotation centres

that generate the same group, and hence if the new quad-

rilateral is a valid embedding of the group, we consider the

group relations. By analogy with the Euclidean case, these

vertices may be expressed in terms of the reference quad-

rilateral as follows:

Q0A ¼ QBQCQB; Q0C ¼ QB;
Q0B ¼ QBQCQBQAQBQCQB; Q0T ¼ QT :

Once again, it is straightforward to see that the group relations

ðQ0AÞ
2
¼ ðQ0BÞ

2
¼ ðQ0CÞ

2
¼ ðQ0TÞ

3
¼ I are satisfied for these

elements. The other group relation, where Q0AQ0BQ0C must be

equal to Q0T, is also satisfied; hence the quadrilateral shown
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Figure 33
(a) An embedding of the 2223 orbifold into H2. The corners of the
quadrilateral are a reference frame grid for other embeddings. (b) A
subsequent embedding of the 2223 orbifold into H

2 relative to the
reference frame established previously. The regions shown illustrate the
four rotation centres that define the group generators, and the full
fundamental domains are double the size of these regions.

Figure 32
(a) An embedding of the 2222 orbifold in E2. The corners of the square
coincide with the points f0; 0g, f1; 0g, f1; 1g and f0; 1g, establishing a
reference frame of Z� Z for subsequent embeddings. (b) Another
embedding of 2222 relative to the established reference frame.



leads to a valid covering of the 2223 orbifold in H2 given the

reference frame.

To enumerate coverings, we determine possible locations of

the Q0C generator with respect to the reference frame: the

analogue of finding the coprime fp; qg vertex of the paralle-

logram. We fix the QT generator (our origin), and consider a

�=3 sector of the plane, as all others will be equivalent by

symmetry (as was the case for the �=2 sector of 2222 in E2).

Since a single asymmetric domain of the orbifold – the

quadrilateral – necessarily tessellates H
2 by the group

isometries, the orbit of the quadrilateral edge from the origin

to Q0C cannot include edges that intersect the edge at some

interior point.

Consider a threefold rotation site located at the origin (Q0T),
~0, in Fig. 34(a), along with its image due to the twofold

operation at QC denoted ~1. Because of the twofold isometry

at QC, the edge from Q0T to Q0C in the parallelogram of the new

covering must have three copies radiating from the site ~1, one

in each of the sectors W1, W2 and W3. Therefore if Q0C lies

within the sector W3, as shown by the blue geodesic in Fig.

34(b), it necessarily intersects an image of itself radiating from
~1, signified by the red geodesic in Fig. 34(b). This prohibits

the placement of Q0C in the sector W3.

Since the W3 sector cannot contain Q0C, we can excize this

prohibited sector (to infinity) from H
2 and fuse the pair of

boundary edges of sector W3 radiating from ~1, as in Fig.

35(a). [The operation inserts a positive (2�=3) disclination at
~1.] The modified domain, shown in Fig. 35(b), no longer has a

threefold rotation at ~1, which is now a twofold rotation, and

the threefold rotations ~2 and ~3 have been fused.

By the same argument, further W3 sectors of the plane can

be excized, and a 2�=3 disclination inserted at the fused ~2/3

site, and so on. The continued application of this process

results in an infinite line of twofold rotations located at the

former threefold sites. The symmetry of the remaining domain

of allowed locations of Q0C is therefore 2222, an isometry of

the Euclidean plane. In other words, this sector of H2 is

completely decurved by the disclinations, forming a region of

E
2. These prohibited sectors are shown on the 2223 discreti-

zation of H2 in Fig. 36.

Possible locations of Q0C are therefore confined to discrete

sites in H2, discretized by Z� Z. By the same argument, Q0A is

likewise limited to lying within a subset ofH2 whose domain is

described by the pair of indices from Z� Z that, if fused along

all boundary lines, forms a sector of E2. (Recall lastly, that the

location of Q0B is completely determined by Q0A and Q0C.)

As a result of this Euclidean subdomain of H2, we may

index all possible quadrilateral domains of the 2223 orbifold

exactly by parallelograms of unit area in Z� Z. Fig. 37 shows

the Z� Z grid within a �=3 sector of the discretization of H2

by the 2223 reference frame covering.

In contrast to the Coxeter and hat orbifolds, the stellate

case therefore leads to a two-parameter family of orbifold

domains. Each distinct embedding of a 2223 stellate orbifold

into the ?246 tiling of H2 leads to a distinct embedded free

tiling of H2, following the prescription for tile edges given in

Fig. 6. To fix the 2223 coverings relative to the ?246 discre-
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Figure 34
(a) A diagram showing the threefold rotation at the origin (~0) and an
image (~1), due to the twofold operation at QC (small black lens), where
~1 divides H2 into three sectors, W1, W2 and W3. (b) If Q0C (the end of the
blue geodesic) is located in the W3 sector, the edge from the origin to Q0C
(the blue geodesic) will certainly intersect an image of itself, as shown by
the red geodesic.

Figure 36
Prohibited sectors of the 2223 discretization of H2 are shown. There are
infinitely many prohibited sectors, located at every threefold rotation of
the discretization, but only three such sectors are shown here. The
remaining ‘allowed’ domain is a Euclidean subdomain of H2.

Figure 35
(a) The sector W3 can be excized and the boundary sewn together to form
a boundary-free plane. (b) The result is a line of twofold rotations,
terminating at a new threefold rotation. Repeating the cutting process
further removes territory from where Q0C is prohibited.

Figure 37
The positioning of the grid points of Z� Z in a �=3 sector of 2223
discretization of H2.



tization, we locate the basis set of generators, QT , QA, QB and

QC as shown in Fig. 38. Note that the full fundamental domain

of the stellate orbifold, characterized by the vertices Q0T, Q0A,

Q0B and Q0C, which is required to form the complete Delaney–

Dress representation of the abstract tilings, may be obtained

by doubling the quadrilateral joining the generators across the

line joining Q0T and Q0C.

APPENDIX B
Subgroups of ?246 and ?2226

See Tables 6 and 7.

We thank Stuart Ramsden for helpful discussions on many

aspects of this work. MEE thanks the Humboldt Foundation

for generous support.
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Table 6
Subgroups of ?246 commensurate with the P, D and G minimal surfaces
(Robins et al., 2004a).

The group number, orbifold symbol, group index and the corresponding space
groups on each of the P, D and G surfaces are given.

Group # Orbifold Index P surface D surface G surface

129 2?23 2 I432 Fd3m I4132

124 ?2223 2 Pm3m P4232 I4132

123 ?2224 3 I4=mmm P42=nnm I41=acd

122 2?26 4 R3m R3m R3c

118 2223 4 P432 F4132 I4132

114 2224 6 P4=nnc I41=acd I41=acd

93 2226 8 R3c R3c R3c

Table 7
Subgroups of ?2226 commensurate with the H minimal surface (Robins
et al., 2004b).

The group number, orbifold symbol, group index and the corresponding space
group on the H surface are given.

Group # Orbifold Index H surface

32 ?2226 1 P63=mmc

31 2226 2 P31c

Figure 38
The locations of the reference frame generators of the 2223 symmetry
group in the ?246 tiling of H2.
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